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The transitional boundary-layer dataset is produced from direct numerical simulations (DNS)
of incompressible flow over a flat plate with an elliptical leading edge. While the full simulation
domain is shown in figure 1(a), only data from the domain over the flat region of the upper plate is
stored in the JHTDB. The coordinate system is shown in figure 1(b), where the streamwise, vertical
and spanwise coordinates are denoted by x, y and z, and corresponding velocity components are
u, v and w. The half-thickness of the plate, L, is used as a reference length-scale, and the reference
velocity is the incoming free-stream speed U∞. The length of the plate is Lx = 1050L measured
from the leading edge (x = 0), and its width is Lz = 240L. The leading-edge geometry is a super
ellipse with the stagnation point located at (x, y) = (0,−L),(
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where AR = 20 is the aspect ratio of the ellipse. The Reynolds number based on the plate half-
thickness, free-stream speed and fluid viscosity is ReL ≡ U∞L/ν = 800. The stored data correspond
to x ∈ [30.2185, 1000.065]L, y ∈ [0.0036, 26.4880]L and z ∈ [0, 240]L.

Inflow free-stream turbulence

The inflow condition at the upstream curved boundary of the domain is a superposition of a
uniform velocity U∞ and turbulent fluctuations u′FST. The free-stream disturbances decay as they
are advected towards the leading edge, and their intensity at the start of the plate is Tu = 3%
which is similar to the T3A benchmark experiment by (Roach & Brierley, 1992). Downstream, the
free-stream perturbations interact with the underlying laminar boundary layer and cause bypass
transition of the boundary layer to turbulence (Zaki, 2013; Nolan & Zaki, 2013).

The inflow perturbations were obtained from a precursor, pseudo-spectral simulation of de-
caying homogeneous isotropic turbulence (HIT) in a periodic domain. The domain sizes were
(Lx, Ly, Lz)FST = (240, 15, 240)L and the corresponding number of Fourier modes were (2048, 128, 2048).
A snapshot of the evolution of the turbulence was stored as used as an inflow condition, which
guided the choice of the HIT domain size. In the wall-normal direction, the HIT domain can be
copied without affecting accuracy since only one box will interact with the leading edge and the
boundary layer. In the span, the size matched the main simulation in order to avoid unphysical
spanwise correlations. Since Taylor’s hypothesis transforms the streamwise spatial coordinate into
time, the streamwise length of the HIT domain was long. In addition, in order to avoid a periodic
inflow condition, the box of HIT was rotated around its z-axis by an angle α (see figure 2). In
this manner, the selected inflow plane was shifted vertically by one integral lengthscale after every
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Figure 1: (a) Visualization of the computational domain for the boundary-layer simulation. (Color)
Vortical structures, λ2 = −0.01U2

∞/L
2; streamwise velocity fluctuations, (black) u′ = −0.1U∞ and

(white) u′ = 0.1U∞; (side view) computational grid (every sixteenth grid line is plotted). The
rectangular box marks the domain stored in the JHTDB. (b) Origin of the coordinate system.

Lx,FST / (U∞ cosα) time units. We also ensured that the ratio of the vertical shift to the height of
the inflow box, Lk/Ly,FST , is an irrational number.

The length-scale of the inflow turbulence is Lk = 1.8L, the Taylor Reynolds number is Reλ =
24.2, and the turbulence intensity is Tu = 0.035. The energy spectrum of the stored turbulent field
is shown in figure 2, where it is compared to the data by Wang et al. (1996). Once prescribed at
the inflow to the main simulation, the free-stream turbulence intensity decays with the streamwise
position according to (x − xg)−0.8. The intensity is approximately Tu = 3% at the leading edge,
and slightly less than Tu = 0.5% at the exit of the boundary-layer simulation domain.

Boundary-layer simulation details

Direct numerical simulation (DNS) of the boundary-layer flow over the plate was performed by
discretizing the Navier-Stokes equation on a curvilinear grid (figure 1). A fractional-step algorithm
was adopted, and the spatial discretization was a staggered volume-flux formulation (Rosenfeld
et al., 1991). The viscous terms were integrated in time implicitly using the Crank–Nicolson and
the advection terms were treated explicitly using the Adams–Bashforth scheme. Pressure was
treated using implicit Euler in the δp-form. The pressure equation was Fourier transformed in
the span, and the resulting Helmholtz equation was solved for every spanwise wavenumber using
two-dimensional multi-grid. The DNS code has been validated in numerous previous studies (e.g.,
Zaki et al., 2010; Lee et al., 2013, 2017).
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Figure 2: Left: Three-dimensional energy spectrum of inflow homogeneous isotropic turbulence in
Kolmogorov scaling, at Taylor Reynolds number Reλ = 24.2. Symbols are data at Reλ = 20.9 from
Wang et al. (1996). Right: Schematic of inflow condition to main simulation.

(Lx, Ly, Lz)/L (Nx, Ny, Nz) ∆x+ ∆y+min ∆z+

(1050, 40, 240) (4097, 257, 2049) 11.9 0.124 4.07

Table 1: Domain size, number of grid points, and spatial resolution of boundary-layer simulation,
all reported at x = 1000L.

At the wall, a no-slip boundary condition is applied, while periodic boundary conditions are
applied in the spanwise direction. The boundary condition at the top of the computational domain
used continuity and an active control to keep the zero pressure gradient (ZPG) in both laminar
and turbulent regions. An advection boundary condition is applied at the downstream end of the
top region;. The outflow boundary condition on the bottom surface is a mirror copy of the same
grid line on the top surface Lee & Zaki (2018).

The domain size and grid resolution are listed in table 1. The leading-edge region (x < 20)
was discretized using 475 grid points in the wall-tangential direction, with minimum grid spacing
0.001L at the leading edge (stagnation point). Far downstream (x = 1000), the streamwise spacing
is ∆x+ = 11.9. At the same streamwise location, the wall-normal grid spacing in the immediate
vicinity of the wall is y+min = 0.124, and 29 grid points are located within y+ < 10. Grid stretching
in both the wall-tangential and normal directions was kept at less than 3% between adjacent cells,
throughout the domain. The grid spacing in the spanwise direction is 0.117L uniform across the
domain and, at x̃ = 1000, it corresponds to ∆z+ = 4.07. The simulation time-step is fixed at
∆t = 0.005L/U∞.

The simulation has been conducted using compute resources at the San Diego Supercomputing
Center (SDSC) Comet and the Maryland Advanced Research Computing Center (MARCC). Three-
dimensional flow fields were stored in two domains; the shallow body-fitted domain near the leading
edge and a rectangular domain downstream — only the latter is currently part of the JHTDB.
Both regions are stored in full spatial-resolution with a time-step between stored snapshots of
∆tins = 0.25L/U∞. This time separation between snapshots is sufficiently small for the stored
data to be considered temporally well resolved. A total of 4701 snapshots have been stored for a
total time equal to 1175.0L/U∞, about one flow through time. The total amount of data stored
corresponds to about 105 Terabytes in single precision.
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Figure 3: Skin-friction coefficient versus Reθ. (Dotted) Laminar level Cf = 0.664/
√
Rex; (dashed)

turbulent correlation Cf = 0.445/ (log 0.06Rex)2; (symbols) T3A data (Roach & Brierley, 1992).

Flow statistics
The skin-friction coefficient, Cf , is plotted in figure 3 versus the momentum-thickness Reynolds
number, Reθ. The figure shows excellent agreement with the data from the reference T3A experi-
ment (Roach & Brierley, 1992), including the slightly lower Cf than laminar value in the upstream
region at Reθ ≈ 60 due to the finite thickness of the plate. Also, the onset and end of the transition
region are consistent with the experiment.

A comparison of the mean velocity and root-mean-square fluctuations from the present simu-
lation and T3A data is provided in figure 4. Additional data at Reθ = 1000 from the work by
Schlatter et al. (2009) are also included in the figure. The streamwise mean velocity agrees with
both previous experiments and computations. The stresses are also in agreement in the inner region
of the boundary layer, but deviate from the simulation data by Schlatter et al. (2009) in the outer
flow due to the presence of free-stream turbulence.

Contour plot of the mean velocities are shown in figure 5. A magnified view near the leading-edge
stagnation point is also provided. The mean streamwise velocity (figure 5a) shows the boundary-
layer development, and the marked u = 0.99U∞ contour (dashed line) provides a measure of the
boundary-layer thickness. The change in the growth rate of that contours near x ≈ 350L marks the
transitional region. The mean vertical velocity is shown in figure 5(b). Near the leading edge (figure
5bi), the presence of the finite-thickness body induces the abrupt change in the vertical velocity.
In the transitional region, centered around x ≈ 350L, the negative V is required by continuity to
effect the change in the U(y) profile from laminar to turbulence since ∂U/∂x > 0 in the near-wall
region. Figure 5(c) shows the streamwise gradient of the mean pressure. Owing to the top boundary
condition, the pressure gradient is nearly zero in the flat-wall region, irrespective to the laminar
and turbulent regions.

Figure 6 shows the variation of the Reynolds stress in the domain. Upstream of the leading
edge, the three components of normal stresses are finite while the shear stress is nearly zero. The
streamwise fluctuations amplify in the boundary layer, immediately downstream of the leading
edge. In the transition zone, the wall-normal peak in the streamwise stress moves toward the wall.
In addition, the Reynolds shear stress increases as well as the normal and spanwise normal stresses.
Downstream of the transition zone, the distribution of stresses approaches, and ultimately recovers,
that of a fully turbulent boundary layer.

4



U
+

0

10

20
Re  =  628

Re  = 1137

(a)

u
+ rm

s

0

1

2

3
(b)

y
+

v+ rm
s

10
0

10
1

10
2

10
3

0

0.5

1

1.5
(c)

y
+

w
+ rm

s
10

0
10

1
10

2
10

3
0

0.5

1

1.5
(d)

Figure 4: Turbulence statistics at Reθ = 628 and 1137 normalized by the friction velocity; (a) mean
streamwise velocity and r.m.s. of (b) streamwise, (c) vertical and (d) spanwise velocity fluctuations.
Symbols correspond to data at (∇) Reθ = 628 and (N) 1137 from the T3A experiments (Roach &
Brierley, 1992); (◦) Reθ = 1000 by Schlatter et al. (2009).

Figure 5: Time- and spanwise-averaged (top) streamwise velocity, (middle) vertical velocity and
(bottom) streamwise mean-pressure gradient. The dashed line marks the iso-contour u = 0.99U∞.
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Figure 6: Contour plots the r.m.s. of (a) streamwise, (b) vertical and (c) spanwise velocity
fluctuations. (d) Reynolds shear stress, −u′v′. All quantities are normalized by U∞. The dashed
line marks the iso-contour u = 0.99U∞.

Simulation parameters

- Inflow free stream velocity: U∞ = 1 reference velocity scale

- Half thickness of the plate: L = 1 reference lengths scale

- Viscosity: ν = 1.25× 10−3

- Simulation domain Length: Lξ × Lη × Lz = (1099× 40× 240)L in curvilinear coordinates

- Plate length: Lx = 1050L

- Simulation grid: Nξ ×Nη ×Nz = 4097× 257× 2049

- Simulation time step: ∆t = 0.005L/U∞

- Isotropic turbulence at the curved simulation inlet: 3.5%

- Database domain: x× y × z = [30.2185, 1000.065]L× [0.0036, 26.4880]L× [0, 240]L

- Database domain Length: Lx × Ly × Lz = (969.8465× 26.4844× 240)L

- Database grid: Nx ×Ny ×Nz = 3320× 224× 2048

- Database time step: ∆t = 0.25L/U∞

- Isotropic turbulence at the database inlet (x/L = 30.2185): 2.86%

- Time stored: t ∈ [0, 1175.0]L/U∞
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Flow statistics within the JHTDB sub-domain, averaged in span and t ∈ [0, 1175.0]

- Boundary layer thickness: δ99 = 0.9648− 15.0433L

- Momentum thickness: θ = 0.1318− 1.8775L

- Reynolds number based on boundary-layer thickness: Reδ ≡ U∞δ99/ν = 772− 12035

- Reynolds number based on momentum thickness: Reθ ≡ U∞θ/ν = 105.5− 1502.0

Note 1: In the JHTDB analysis tools for this dataset, only the 4th-order Lagrange Polynomial
interpolation scheme and the 4th-order finite differencing scheme (Lag4, FD4NoInt and FD4Lag4)
are implemented. Higher order schemes are not provided since the DNS was performed using
second-order methods.

Note 2: The divergence-free condition in the simulation is enforced based on a Helmholtz equation.
The JHTDB analysis tools for gradients are based on 4th-order finite differencing. Therefore, when
evaluating the divergence using these spatially less localized derivative operators, a non-negligible
error in the divergence is obtained, as expected.

Note 3: Since the grid is staggered, data at the wall are not stored in the database. However,
the JHTDB provides values in the region y/L ∈ [0, 0.0036] for user’s convenience. Specifically,
GetVelocity and GetPosition will enforce u = v = w = 0 at the wall (y = 0) and use the zero-
velocity condition to perform the interpolation in the region y ∈ [0, 0.0036]. Other GetFunctions
(i.e. GetPressure, GetVelocityGradient, GetPressureGradient, GetVelocityHessian, GetPressure-
Hessian, GetVelocityLaplacian and GetInvariant) will return extrapolated values using the 4th-
order Lagrange Polynomial method and using only the data on the fluid grid points to perform
interpolation/extrapolation.
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